Autor: |
Guifu Su, Yue Wu, Xiaowen Qin, Junfeng Du, Weili Guo, Zhenghang Zhang, Lifei Song |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 8, Iss 12, Pp 29352-29367 (2023) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.20231502?viewType=HTML |
Popis: |
The cyclomatic number, denoted by $ \gamma $, of a graph $ G $ is the minimum number of edges of $ G $ whose removal makes $ G $ acyclic. Let $ \mathscr{G}_{n}^{\gamma} $ be the class of all connected graphs with order $ n $ and cyclomatic number $ \gamma $. In this paper, we characterized the graphs in $ \mathscr{G}_{n}^{\gamma} $ with minimum general Randić index for $ \gamma\geq 3 $ and $ 1\leq\alpha\leq \frac{39}{25} $. These extend the main result proved by A. Ali, K. C. Das and S. Akhter in 2022. The elements of $ \mathscr{G}_{n}^{\gamma} $ with maximum general Randić index were also completely determined for $ \gamma\geq 3 $ and $ \alpha\geq 1 $. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|