Sharp bounds for the general Randić index of graphs with fixed number of vertices and cyclomatic number

Autor: Guifu Su, Yue Wu, Xiaowen Qin, Junfeng Du, Weili Guo, Zhenghang Zhang, Lifei Song
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: AIMS Mathematics, Vol 8, Iss 12, Pp 29352-29367 (2023)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.20231502?viewType=HTML
Popis: The cyclomatic number, denoted by $ \gamma $, of a graph $ G $ is the minimum number of edges of $ G $ whose removal makes $ G $ acyclic. Let $ \mathscr{G}_{n}^{\gamma} $ be the class of all connected graphs with order $ n $ and cyclomatic number $ \gamma $. In this paper, we characterized the graphs in $ \mathscr{G}_{n}^{\gamma} $ with minimum general Randić index for $ \gamma\geq 3 $ and $ 1\leq\alpha\leq \frac{39}{25} $. These extend the main result proved by A. Ali, K. C. Das and S. Akhter in 2022. The elements of $ \mathscr{G}_{n}^{\gamma} $ with maximum general Randić index were also completely determined for $ \gamma\geq 3 $ and $ \alpha\geq 1 $.
Databáze: Directory of Open Access Journals