Autor: |
Sahaya Ruben, M. Sophia, M. A. Raja, Chandran Masi |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Advances in Civil Engineering, Vol 2022 (2022) |
Druh dokumentu: |
article |
ISSN: |
1687-8094 |
DOI: |
10.1155/2022/7918750 |
Popis: |
The present research work tries to assess the performance of a self-compacting mortar containing zircon sand as a substitute for river aggregate in combination with nanoalumina and nanosilica as cement replacements. The fresh state results, as observed through the mini slump cone and mini V funnel, showed positive effects of zircon sand on workability attainment. The EFNARC limits of workability were even satisfied at high substitution levels of the nanoparticle due to the contribution of zircon sand. The mechanical properties, durability, and microstructure of the mortar were evaluated by conducting experiments at room temperature and then at 200°C, 400°C, 600°C, and 800°C. Results show that there was a significant improvement in the thermal stability of the RPC mixes due to the synergistic effect of nanomaterials and zircon sand addition. The addition of nanomaterials and zircon sand accelerated the microstructural buildup and durability at elevated temperatures. The findings thus suggest a novel and effective approach to using zircon sand as a potential alternative to quartz sand in RPC in combination with nanomaterials to produce temperature-resistant concrete structures. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|