Autor: |
Manuel J. Arnold, Stefan W. Ritter, Matthias A. Ehrmann, Yohanes N. Kurniawan, Koji Suzuki, Thomas M. Becker, Wolfgang Liebl |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Microorganisms, Vol 12, Iss 10, p 2045 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-2607 |
DOI: |
10.3390/microorganisms12102045 |
Popis: |
Obligate anaerobic beer spoilage bacteria have been a menace to the brewing industry for several decades. Technological advances in the brewing process aimed at suppressing aerobic spoilers gave rise to problems with obligate anaerobes. In previous studies, the metabolic spectrum of Pectinatus and Megasphaera species has been described, but their metabolism in the beer environment remains largely unknown. We used high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GCMS) to further characterize beer spoiled by 30 different strains from six beer-spoiling species of Pectinatus and Megasphaera (P. cerevisiiphilus, P. frisingensis, P. haikarae, M. cerevisiae, M. paucivorans, and M. sueciensis). We detected differences in carbohydrate utilization and the volatile organic compounds (volatilome) produced during beer spoilage by all six species. We were able to show that glycerol, one of the basic components of beer, is the common carbon source used by all strains. It appears that this carbon source allows for anaerobic beer spoilage by Pectinatus and Megasphaera despite the spoilage-preventing intrinsic barriers of beer (iso-α-acids, ethanol, low pH, scarce nutrients); thus, extrinsic countermeasures are key for prevention. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|