Autor: |
Dusan D. Repovs |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2018, Iss 41,, Pp 1-10 (2018) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
We study the degenerate elliptic equation $$ -\hbox{div}(|x|^\alpha\nabla u) =f(u)+t\phi(x)+h(x) $$ in a bounded open set $\Omega$ with homogeneous Neumann boundary condition, where $\alpha\in(0,2)$ and f has a linear growth. The main result establishes the existence of real numbers $t_*$ and $t^*$ such that the problem has at least two solutions if $t\leq t_*$, there is at least one solution if $t_*t^*$. The proof combines a priori estimates with topological degree arguments. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|