Hardy and Sobolev inequalities on antisymmetric functions

Autor: Th. Hoffmann-Ostenhof, A. Laptev, I. Shcherbakov
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Bulletin of Mathematical Sciences, Vol 14, Iss 01 (2024)
Druh dokumentu: article
ISSN: 16643607
1664-3615
1664-3607
DOI: 10.1142/S1664360723500108
Popis: We obtain sharp Hardy inequalities on antisymmetric functions, where antisymmetry is understood for multi-dimensional particles. Partially it is an extension of the paper [Th. Hoffmann-Ostenhof and A. Laptev, Hardy inequalities with homogeneous weights, J. Funct. Anal. 268 (2015) 3278–3289], where Hardy’s inequalities were considered for the antisymmetric functions in the case of the 1D particles. As a byproduct we obtain some Sobolev and Gagliardo–Nirenberg type inequalities that are applied to the study of spectral properties of Schrödinger operators.
Databáze: Directory of Open Access Journals