Hardy and Sobolev inequalities on antisymmetric functions
Autor: | Th. Hoffmann-Ostenhof, A. Laptev, I. Shcherbakov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Bulletin of Mathematical Sciences, Vol 14, Iss 01 (2024) |
Druh dokumentu: | article |
ISSN: | 16643607 1664-3615 1664-3607 |
DOI: | 10.1142/S1664360723500108 |
Popis: | We obtain sharp Hardy inequalities on antisymmetric functions, where antisymmetry is understood for multi-dimensional particles. Partially it is an extension of the paper [Th. Hoffmann-Ostenhof and A. Laptev, Hardy inequalities with homogeneous weights, J. Funct. Anal. 268 (2015) 3278–3289], where Hardy’s inequalities were considered for the antisymmetric functions in the case of the 1D particles. As a byproduct we obtain some Sobolev and Gagliardo–Nirenberg type inequalities that are applied to the study of spectral properties of Schrödinger operators. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |