Popis: |
Natural dietary products of health promoting and disease preventive functional relevance are gaining significant prominence. Current investigation was aimed to decipher the underlying molecular mechanism responsible for the antimutagenic action contributing to functional relevance of floral honey (‘Pongammia pinnata’, Karanj honey) derived abscisic acid (ABA) against ethyl methanesulfonate (EMS) induced mutagenesis. Differential expression of proteins under different treatment conditions was ascertained by 2D gel electrophoresis. Selectively up-regulated characterized using MALDI-TOF MS/MS were identified as polyribonucleotide nucleotidyl transferse (PNPase), LPS-assembly lipoprotein (LptE), Outer membrane Usher protein (HtrE), ATP-dependent DNA helicase (RecG), and Phosphomethyl pyrimidine synthase (ThiC). Antimutagenicity exerted by ABA against EMS was ∼78% in wild type E. coli MG1655 strain however, in E. coli MG1655 ΔthiC, ΔpnpA, ΔrecG, and ΔhtrE this activity was found to be ∼60, 10, 9 and 10%, respectively. Proteomic analysis and antimutagenicity studies using E. coli single gene knockout strains thus indicated about the possible role of thiC, htrE, lptE, recG and pnp in observed antimutagenicity. Cyclic voltametry as well as competition kinetics through pulse radiolysis confirmed lack of antioxidant capacity in abscisic acid apparently ruling out the possibility of scavenging of electrophilic intermediates generated by ethyl methanesulfonate. It is proposed that ABA is exerting antimutagenicity through its involvement at the cellular level leading to physiological adaptation, strengthening of cell wall proteins and up-regulation of the repair proteins. This study provides a novel dimension to the functional role of abscisic acid from its nutraceutical perspective. |