Understanding the Role of Pattern Geometry on Nanofiltration Threshold Flux

Autor: Anna Malakian, Zuo Zhou, Lucas Messick, Tara N. Spitzer, David A. Ladner, Scott M. Husson
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Membranes, Vol 10, Iss 12, p 445 (2020)
Druh dokumentu: article
ISSN: 2077-0375
DOI: 10.3390/membranes10120445
Popis: Colloidal fouling can be mitigated by membrane surface patterning. This contribution identifies the effect of different pattern geometries on fouling behavior. Nanoscale line-and-groove patterns with different feature sizes were applied by thermal embossing on commercial nanofiltration membranes. Threshold flux values of as-received, pressed, and patterned membranes were determined using constant flux, cross-flow filtration experiments. A previously derived combined intermediate pore blocking and cake filtration model was applied to the experimental data to determine threshold flux values. The threshold fluxes of all patterned membranes were higher than the as-received and pressed membranes. The pattern fraction ratio (PFR), defined as the quotient of line width and groove width, was used to analyze the relationship between threshold flux and pattern geometry quantitatively. Experimental work combined with computational fluid dynamics simulations showed that increasing the PFR leads to higher threshold flux. As the PFR increases, the percentage of vortex-forming area within the pattern grooves increases, and vortex-induced shielding increases. This study suggests that the PFR should be higher than 1 to produce patterned membranes with maximal threshold flux values. Knowledge generated in this study can be applied to other feature types to design patterned membranes for improved control over colloidal fouling.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje