A rough set approach for forecasting models
Autor: | Haresh Kumar Sharma, Kriti Kumari, Samarjit Kar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Decision Making: Applications in Management and Engineering, Vol 3, Iss 1, Pp 1-21 (2020) |
Druh dokumentu: | article |
ISSN: | 2560-6018 2620-0104 |
DOI: | 10.31181/dmame2003001s |
Popis: | This paper introduces the performance of different forecasting methods for tourism demand, which can be employed as one of the statistical tools for time series forecasting. The Holt-Winters (HW), Seasonal Autoregressive Integrated Moving Average (SARIMA) and Grey model (GM (1, 1)) are three important statistical models in time-series forecasting. This paper analyzes and compare the performance of forecasting models using rough set methods, Total Roughness (TR), Min-Min Roughness (MMR) and Maximum Dependency of attributes (MDA). Current research identifies the best time series forecasting model among the three studied time series forecasting models. Comparative study shows that HW and SARIMA are superior models than GM (1, 1) for forecasting seasonal time series under TR, MMR and MDA criteria. In addition, the authors of this study showed that GM (1, 1) grey model is unqualified for seasonal time series data. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |