dbPepNeo2.0: A Database for Human Tumor Neoantigen Peptides From Mass Spectrometry and TCR Recognition

Autor: Manman Lu, Linfeng Xu, Xingxing Jian, Xiaoxiu Tan, Jingjing Zhao, Zhenhao Liu, Yu Zhang, Chunyu Liu, Lanming Chen, Yong Lin, Lu Xie
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Immunology, Vol 13 (2022)
Druh dokumentu: article
ISSN: 1664-3224
DOI: 10.3389/fimmu.2022.855976
Popis: Neoantigens are widely reported to induce T-cell response and lead to tumor regression, indicating a promising potential to immunotherapy. Previously, we constructed an open-access database, i.e., dbPepNeo, providing a systematic resource for human tumor neoantigens to storage and query. In order to expand data volume and application scope, we updated dbPepNeo to version 2.0 (http://www.biostatistics.online/dbPepNeo2). Here, we provide about 801 high-confidence (HC) neoantigens (increased by 170%) and 842,289 low-confidence (LC) HLA immunopeptidomes (increased by 107%). Notably, 55 class II HC neoantigens and 630 neoantigen-reactive T-cell receptor-β (TCRβ) sequences were firstly included. Besides, two new analytical tools are developed, DeepCNN-Ineo and BLASTdb. DeepCNN-Ineo predicts the immunogenicity of class I neoantigens, and BLASTdb performs local alignments to look for sequence similarities in dbPepNeo2.0. Meanwhile, the web features and interface have been greatly improved and enhanced.
Databáze: Directory of Open Access Journals