Autor: |
Arash Kamali-Asl, Mark D Zoback, Arjun H. Kohli |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Energies, Vol 14, Iss 4, p 1101 (2021) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en14041101 |
Popis: |
We studied the effects of supercritical carbon dioxide (scCO2) on the matrix permeability of reservoir rocks from the Eagle Ford, Utica, and Wolfcamp formations. We measured permeability using argon before exposure of the samples to scCO2 over time periods ranging from days to weeks. We measured permeability (and the change of permeability with confining pressure) when both argon and scCO2 were the pore fluids. In all three formations, we generally observe a negative correlation between initial permeability and carbonate content—the higher the carbonate content, the lower the initial permeability. In clay- and organic-rich samples, swelling of the matrix resulting from adsorption decreased the permeability by about 50% when the pore fluid was scCO2 although this permeability change is largely reversible. In carbonate-rich samples, dissolution of carbonate minerals by carbonic acid irreversibly increased matrix permeability, in some cases by more than one order of magnitude. This dissolution also increases the pressure dependence of permeability apparently due to enhanced mechanical compaction. Despite these trends, we observed no general correlation between mineralogy and the magnitude of the change in permeability with argon before and after exposure to scCO2. Flow of scCO2 through μm-scale cracks appears to play an important role in determining matrix permeability and the pressure dependence of permeability. Extended permeability measurements show that while adsorption is nearly instantaneous and reversible, dissolution is time-dependent, probably owing to reaction kinetics. Our results indicate that the composition and microstructure of matrix flow pathways control both the initial permeability and how permeability changes after interaction with scCO2. Electron microscopy images with Back-Scattered Electron (BSE) and Energy Dispersive Spectroscopy (EDS) revealed dissolution and etching of calcite minerals and precipitation of calcium sulfide resulting from exposure to scCO2. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|