Fractional Operators and Fractionally Integrated Random Fields on Zν

Autor: Vytautė Pilipauskaitė, Donatas Surgailis
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Fractal and Fractional, Vol 8, Iss 6, p 353 (2024)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract8060353
Popis: We consider fractional integral operators (I−T)d,d∈(−1,1) acting on functions g:Zν→R,ν≥1, where T is the transition operator of a random walk on Zν. We obtain the sufficient and necessary conditions for the existence, invertibility, and square summability of kernels τ(s;d),s∈Zν of (I−T)d. The asymptotic behavior of τ(s;d) as |s|→∞ is identified following the local limit theorem for random walks. A class of fractionally integrated random fields X on Zν solving the difference equation (I−T)dX=ε with white noise on the right-hand side is discussed and their scaling limits. Several examples, including fractional lattice Laplace and heat operators, are studied in detail.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje