Autor: |
Tugçe Teker, Mehmet Aslanoglu |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Arabian Journal of Chemistry, Vol 13, Iss 5, Pp 5517-5525 (2020) |
Druh dokumentu: |
article |
ISSN: |
1878-5352 |
DOI: |
10.1016/j.arabjc.2020.03.029 |
Popis: |
A novel voltammetric method was developed for the sensitive determination of chlorogenic acid (CGA) using a glassy carbon electrode (GCE) modified with niobium nanoparticles (NbNPs) and multiwalled carbon nanotubes (CNTs). The analytical techniques such as energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and X-ray diffraction spectroscopy were used for characterizing electrode material. The proposed voltammetric platform exhibited a highly improved redox couple for CGA. The peak separations (ΔEp) for CGA were 27 mV, 10 mV and 0 mV on the surface of unmodified GCE, CNTs/GCE and NbNPs/CNTs/GCE, respectively. Such a remarkable decrease in the value of ΔEp at NbNPs/CNTs/GCE showed that the electrode process of CGA has been accelerated at the proposed platform. In addition, a potential difference (ΔEp) of 0 V observed at the surface of proposed electrochemical platform was a clear indication of the occurrence of a symmetric voltammogram which could be attributed to a fully surface behavior of CGA. In addition, the current responses of CGA versus concentrations were linear in the range of 2.0 × 10−9 ~ 2.0 × 10−6 M with a detection limit of 8.2 × 10−10 M. Sensitive detection of CGA in samples is of importance for both scientific and therapeutic reasons due to its potential use for the treatment in many diseases. Therefore, the proposed voltammetric method at NbNPs/CNTs/GCE was applied to food samples. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|