Nonoscillatory solutions of the four-dimensional difference system

Autor: Zuzana Dosla, J. Krejčová
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2012, Iss 4, Pp 1-11 (2012)
Druh dokumentu: article
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2012.3.4
Popis: We study asymptotic properties of nonoscillatory solutions for a four-dimensional system \[\begin{aligned} \Delta x_{n}&= C_{n}\, y_{n}^{\frac{1}{\gamma}} \\ \Delta y_{n}&= B_{n}\, z_{n}^{\frac{1}{\beta}} \\ \Delta z_{n}&= A_{n}\, w_{n}^{\frac{1}{\alpha}} \\ \Delta w_{n}&= D_{n}\, x_{n+\tau}^{\delta}. \end{aligned}\] In particular, we give sufficient conditions that any bounded nonoscillatory solution tends to zero and any unbounded nonoscillatory solution tends to infinity in all its components.
Databáze: Directory of Open Access Journals