A Fairness-Enhanced Federated Learning Scheduling Mechanism for UAV-Assisted Emergency Communication

Autor: Chun Zhu, Ying Shi, Haitao Zhao, Keqi Chen, Tianyu Zhang, Chongyu Bao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Sensors, Vol 24, Iss 5, p 1599 (2024)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s24051599
Popis: As the frequency of natural disasters increases, the study of emergency communication becomes increasingly important. The use of federated learning (FL) in this scenario can facilitate communication collaboration between devices while protecting privacy, greatly improving system performance. Considering the complex geographic environment, the flexible mobility and large communication radius of unmanned aerial vehicles (UAVs) make them ideal auxiliary devices for wireless communication. Using the UAV as a mobile base station can better provide stable communication signals. However, the number of ground-based IoT terminals is large and closely distributed, so if all of them transmit data to the UAV, the UAV will not be able to take on all of the computation and communication tasks because of its limited energy. In addition, there is competition for spectrum resources among many terrestrial devices, and all devices transmitting data will bring about an extreme shortage of resources, which will lead to the degradation of model performance. This will bring indelible damage to the rescue of the disaster area and greatly threaten the life safety of the vulnerable and injured. Therefore, we use user scheduling to select some terrestrial devices to participate in the FL process. In order to avoid the resource waste generated by the terrestrial device resource prediction, we use the multi-armed bandit (MAB) algorithm for equipment evaluation. Considering the fairness issue of selection, we try to replace the single criterion with multiple criteria, using model freshness and energy consumption weighting as reward functions. The state of the art of our approach is demonstrated by simulations on the datasets.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje