Autor: |
Benedikt Schmitz, Stefan Scheuren |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Nuclear Engineering, Vol 5, Iss 2, Pp 114-127 (2024) |
Druh dokumentu: |
article |
ISSN: |
2673-4362 |
DOI: |
10.3390/jne5020009 |
Popis: |
The development of compact neutron sources for applications is extensive and features many approaches. For ion-based approaches, several projects with different parameters exist. This article focuses on ion-based neutron production below the spallation barrier for proton and deuteron beams with arbitrary energy distributions with kinetic energies from 3 MeV to 97 MeV. This model makes it possible to compare different ion-based neutron source concepts against each other quickly. This contribution derives a predictive model using Monte Carlo simulations (an order of 50,000 simulations) and deep neural networks. It is the first time a model of this kind has been developed. With this model, lengthy Monte Carlo simulations, which individually take a long time to complete, can be circumvented. A prediction of neutron spectra then takes some milliseconds, which enables fast optimization and comparison. The models’ shortcomings for low-energy neutrons (<0.1 MeV) and the cut-off prediction uncertainty (±3 MeV) are addressed, and mitigation strategies are proposed. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|