Data-driven solutions of ill-posed inverse problems arising from doping reconstruction in semiconductors
Autor: | S. Piani, P. Farrell, W. Lei, N. Rotundo, L. Heltai |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Applied Mathematics in Science and Engineering, Vol 32, Iss 1 (2024) |
Druh dokumentu: | article |
ISSN: | 27690911 2769-0911 |
DOI: | 10.1080/27690911.2024.2323626 |
Popis: | ABSTRACTThe non-destructive estimation of doping concentrations in semiconductor devices is of paramount importance for many applications ranging from crystal growth to defect and inhomogeneity detection. A number of technologies (such as LBIC, EBIC and LPS) have been developed which allow the detection of doping variations via photovoltaic effects. The idea is to illuminate the sample at several positions and detect the resulting voltage drop or current at the contacts. We model a general class of such photovoltaic technologies by ill-posed global and local inverse problems based on a drift-diffusion system which describes charge transport in a self-consistent electrical field. The doping profile is included as a parametric field. To numerically solve a physically relevant local inverse problem, we present three approaches, based on least squares, multilayer perceptrons, and residual neural networks. Our data-driven methods reconstruct the doping profile for a given spatially varying voltage signal induced by a laser scan along the sample's surface. The methods are trained on synthetic data sets which are generated by finite volume solutions of the forward problem. While the linear least square method yields an average absolute error around 10%, the nonlinear networks roughly halve this error to 5%. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |