Autor: |
Pan Yang, Huakai Wang, Longxian Li, Nan Zhang, Yongxi Ma |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Agriculture, Vol 11, Iss 5, p 418 (2021) |
Druh dokumentu: |
article |
ISSN: |
2077-0472 |
DOI: |
10.3390/agriculture11050418 |
Popis: |
This study was performed to evaluate the plasma vitamin kinetic behavior following oral vitamin supplement administration in pigs, and to determine the bioavailability of vitamins. A total of 36 pigs (fitted with jugular catheters) with an average body weight of 25 ± 2.24 kg were divided into three treatment groups: (1) placebo, (2) non-microencapsulated multivitamins supplement, or (3) lipid matrix microencapsulated multivitamins supplement. The blood samples were obtained starting pre-meal until 72 h post-meal for plasma vitamin analysis. Pharmacokinetic parameters were modeled with a non-compartmental method. The AUC (Area under the curve) from the time of dosing to the time of the last observation, Cmax (Maximum observed concentration), and MRT (Mean residence time) of α-tocopherol from oral non-microencapsulated supplement were significantly lower than oral microencapsulated supplement (p < 0.01). The average relative bioavailability of vitamin A (VA) and vitamin E (VE) from microencapsulated supplement was greater than that from non-microencapsulated supplement, but relative bioavailability of vitamin K3 (VK3) and water-soluble vitamins from microencapsulated supplement was lower than non-microencapsulated supplement. The AUC and Cmax of menadione, thiamine, and riboflavin from microencapsulated supplement were significantly lower than these parameters from oral non-microencapsulated supplement. Lipid matrix microencapsulation was able to delay absorption and improved the bioavailability of VE, whereas there were limited effects of microencapsulation on vitamin D (VD), VK3, and water-soluble vitamins. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|