Disparate temperature-dependent virus-host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium.

Autor: Philip V'kovski, Mitra Gultom, Jenna N Kelly, Silvio Steiner, Julie Russeil, Bastien Mangeat, Elisa Cora, Joern Pezoldt, Melle Holwerda, Annika Kratzel, Laura Laloli, Manon Wider, Jasmine Portmann, Thao Tran, Nadine Ebert, Hanspeter Stalder, Rune Hartmann, Vincent Gardeux, Daniel Alpern, Bart Deplancke, Volker Thiel, Ronald Dijkman
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: PLoS Biology, Vol 19, Iss 3, p e3001158 (2021)
Druh dokumentu: article
ISSN: 1544-9173
1545-7885
DOI: 10.1371/journal.pbio.3001158
Popis: Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.
Databáze: Directory of Open Access Journals