A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS

Autor: Juan Terven, Diana-Margarita Córdova-Esparza, Julio-Alejandro Romero-González
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Machine Learning and Knowledge Extraction, Vol 5, Iss 4, Pp 1680-1716 (2023)
Druh dokumentu: article
ISSN: 2504-4990
DOI: 10.3390/make5040083
Popis: YOLO has become a central real-time object detection system for robotics, driverless cars, and video monitoring applications. We present a comprehensive analysis of YOLO’s evolution, examining the innovations and contributions in each iteration from the original YOLO up to YOLOv8, YOLO-NAS, and YOLO with transformers. We start by describing the standard metrics and postprocessing; then, we discuss the major changes in network architecture and training tricks for each model. Finally, we summarize the essential lessons from YOLO’s development and provide a perspective on its future, highlighting potential research directions to enhance real-time object detection systems.
Databáze: Directory of Open Access Journals