Autor: |
Dejan Jakimovski, Ryu P. Dorn, Megan Del Regno, Alexander Bartnik, Niels Bergsland, Murali Ramanathan, Michael G. Dwyer, Ralph H. B. Benedict, Robert Zivadinov, Kinga Szigeti |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Neuroscience, Vol 18 (2024) |
Druh dokumentu: |
article |
ISSN: |
1662-453X |
DOI: |
10.3389/fnins.2024.1359028 |
Popis: |
IntroductionCHRFAM7A, a uniquely human fusion gene, has been associated with neuropsychiatric disorders including Alzheimer’s disease, schizophrenia, anxiety, and attention deficit disorder. Understanding the physiological function of CHRFAM7A in the human brain is the first step to uncovering its role in disease. CHRFAM7A was identified as a potent modulator of intracellular calcium and an upstream regulator of Rac1 leading to actin cytoskeleton reorganization and a switch from filopodia to lamellipodia implicating a more efficient neuronal structure. We performed a neurocognitive-MRI correlation exploratory study on 46 normal human subjects to explore the effect of CHRFAM7A on human brain.MethodsDual locus specific genotyping of CHRFAM7A was performed on genomic DNA to determine copy number (TaqMan assay) and orientation (capillary sequencing) of the CHRFAM7A alleles. As only the direct allele is expressed at the protein level and affects α7 nAChR function, direct allele carriers and non-carriers are compared for neuropsychological and MRI measures. Subjects underwent neuropsychological testing to measure motor (Timed 25-foot walk test, 9-hole peg test), cognitive processing speed (Symbol Digit Modalities Test), Learning and memory (California Verbal Learning Test immediate and delayed recall, Brief Visuospatial Memory Test—Revised immediate and delayed recall) and Beck Depression Inventory—Fast Screen, Fatigue Severity Scale. All subjects underwent MRI scanning on the same 3 T GE scanner using the same protocol. Global and tissue-specific volumes were determined using validated cross-sectional algorithms including FSL’s Structural Image Evaluation, using Normalization, of Atrophy (SIENAX) and FSL’s Integrated Registration and Segmentation Tool (FIRST) on lesion-inpainted images. The cognitive tests were age and years of education-adjusted using analysis of covariance (ANCOVA). Age-adjusted analysis of covariance (ANCOVA) was performed on the MRI data.ResultsCHRFAM7A direct allele carrier and non-carrier groups included 33 and 13 individuals, respectively. Demographic variables (age and years of education) were comparable. CHRFAM7A direct allele carriers demonstrated an upward shift in cognitive performance including cognitive processing speed, learning and memory, reaching statistical significance in visual immediate recall (FDR corrected p = 0.018). The shift in cognitive performance was associated with smaller whole brain volume (uncorrected p = 0.046) and lower connectivity by resting state functional MRI in the visual network (FDR corrected p = 0.027) accentuating the cognitive findings.ConclusionThese data suggest that direct allele carriers harbor a more efficient brain consistent with the cellular biology of actin cytoskeleton and synaptic gain of function. Further larger human studies of cognitive measures correlated with MRI and functional imaging are needed to decipher the impact of CHRFAM7A on brain function. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|