Facile synthesis and characterization of copper oxalate/cobalt oxalate/manganese oxalate and copper oxide/cobalt manganese oxide/manganese oxide as new nanocomposites for efficient photocatalytic degradation of malachite green dye

Autor: Reem K. Shah, Salwa AlReshaidan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Arabian Journal of Chemistry, Vol 15, Iss 12, Pp 104316- (2022)
Druh dokumentu: article
ISSN: 1878-5352
DOI: 10.1016/j.arabjc.2022.104316
Popis: Scientists seek to synthesize new catalysts with simple methods to treat water pollution from organic dyes using photocatalytic degradation technology. In this technology, when light falls on the catalyst, the produced hydroxyl free radicals convert the dye into non-toxic gases such as CO2 and H2O. So, in this work, copper oxalate/cobalt oxalate/manganese oxalate (Abbreviated as P1) and copper oxide/cobalt manganese oxide/manganese oxide (Abbreviated as P2) new nanocomposites were fabricated via precipitation of Cu2+/Co2+/Mn2+ solution using oxalic acid and ignition of precipitate at 550 °C for 4 hrs, respectively. Some tools, involving X-ray diffraction (XRD), UV–vis spectrophotometer, energy dispersive X-ray spectroscopy (EDX), nitrogen gas sorption analyzer, transmission electron microscope (TEM), and field emission scanning electron microscope (FE-SEM), were used for characterizing the fabricated nanocomposites. The EDX spectra confirmed that the P1 composite consist of C (26.28 %), oxygen (46.66 %), manganese (7.27 %), cobalt (7.59 %), and copper (12.20 %). Also, the P2 composite consist of oxygen (8.23 %), manganese (31.34 %), cobalt (27.19 %), and copper (33.24 %). A transmission electron microscope shows that the P1 and P2 composites consist of polyhedral and spherical shapes with an average diameter of 28.13 and 14.37 nm, respectively. The BET surface area, average pore size, and total pore volume of the P1 composite are 29.0725 m2/g, 2.0749 nm, and 0.0302 cc/g, respectively. Besides, the BET surface area, average pore size, and total pore volume of the P2 composite are 58.1088 m2/g, 1.6087 nm, 0.0467 cc/g, respectively. 60 mg of the synthesized nanocomposites completely decompose 60 mL of 15 mg/L of malachite green dye solution within 20 min in the presence of hydrogen peroxide and UV light. The synthesized catalysts outperformed many other catalysts published in previous studies.
Databáze: Directory of Open Access Journals