EEG microstates are correlated with brain functional networks during slow-wave sleep

Autor: Jing Xu, Yu Pan, Shuqin Zhou, Guangyuan Zou, Jiayi Liu, Zihui Su, Qihong Zou, Jia-Hong Gao
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: NeuroImage, Vol 215, Iss , Pp 116786- (2020)
Druh dokumentu: article
ISSN: 1095-9572
DOI: 10.1016/j.neuroimage.2020.116786
Popis: Electroencephalography (EEG) microstates have been extensively studied in wakefulness and have been described as the “atoms of thought”. Previous studies of EEG have found four microstates, i.e., microstates A, B, C and D, that are consistent among participants across the lifespan during the resting state. Studies using simultaneous EEG and functional magnetic resonance imaging (fMRI) have provided evidence for correlations between EEG microstates and fMRI networks during the resting state. Microstates have also been found during non-rapid eye movement (NREM) sleep. Slow-wave sleep (SWS) is considered the most restorative sleep stage and has been associated with the maintenance of sleep. However, the relationship between EEG microstates and brain functional networks during SWS has not yet been investigated. In this study, simultaneous EEG-fMRI data were collected during SWS to test the correspondence between EEG microstates and fMRI networks. EEG microstate-informed fMRI analysis revealed that three out of the four microstates showed significant correlations with fMRI data: 1) fMRI fluctuations in the insula and posterior temporal gyrus positively correlated with microstate B, 2) fMRI signals in the middle temporal gyrus and fusiform gyrus negatively correlated with microstate C, and 3) fMRI fluctuations in the occipital lobe negatively correlated with microstate D, while fMRI signals in the anterior cingulate and cingulate gyrus positively correlated with this microstate. Functional brain networks were then assessed using group independent component analysis based on the fMRI data. The group-level spatial correlation analysis showed that the fMRI auditory network overlapped the fMRI activation map of microstate B, the executive control network overlapped the fMRI deactivation of microstate C, and the visual and salience networks overlapped the fMRI deactivation and activation maps of microstate D. In addition, the subject-level spatial correlations between the general linear model (GLM) beta map of each microstate and the individual maps of each component yielded by dual regression also showed that EEG microstates were closely associated with brain functional networks measured using fMRI during SWS. Overall, the results showed that EEG microstates were closely related to brain functional networks during SWS, which suggested that EEG microstates provide an important electrophysiological basis underlying brain functional networks.
Databáze: Directory of Open Access Journals