Generalized spinning particles on $${\mathcal {S}}^2$$ S 2 in accord with the Bianchi classification
Autor: | Anton Galajinsky |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | European Physical Journal C: Particles and Fields, Vol 81, Iss 3, Pp 1-8 (2021) |
Druh dokumentu: | article |
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-021-08993-1 |
Popis: | Abstract Motivated by recent studies of superconformal mechanics extended by spin degrees of freedom, we construct minimally superintegrable models of generalized spinning particles on $${\mathcal {S}}^2$$ S 2 , the internal degrees of freedom of which are represented by a 3-vector obeying the structure relations of a three-dimensional real Lie algebra. Extensions involving an external field of the Dirac monopole, or the motion on the group manifold of SU(2), or a scalar potential giving rise to two quadratic constants of the motion are discussed. A procedure how to build similar models, which rely upon real Lie algebras with dimensions $$d=4,5,6$$ d = 4 , 5 , 6 , is elucidated. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |