Generalized spinning particles on $${\mathcal {S}}^2$$ S 2 in accord with the Bianchi classification

Autor: Anton Galajinsky
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: European Physical Journal C: Particles and Fields, Vol 81, Iss 3, Pp 1-8 (2021)
Druh dokumentu: article
ISSN: 1434-6044
1434-6052
DOI: 10.1140/epjc/s10052-021-08993-1
Popis: Abstract Motivated by recent studies of superconformal mechanics extended by spin degrees of freedom, we construct minimally superintegrable models of generalized spinning particles on $${\mathcal {S}}^2$$ S 2 , the internal degrees of freedom of which are represented by a 3-vector obeying the structure relations of a three-dimensional real Lie algebra. Extensions involving an external field of the Dirac monopole, or the motion on the group manifold of SU(2), or a scalar potential giving rise to two quadratic constants of the motion are discussed. A procedure how to build similar models, which rely upon real Lie algebras with dimensions $$d=4,5,6$$ d = 4 , 5 , 6 , is elucidated.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje