Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics

Autor: Sasikumar Padmini Arun, Christophe Chesneau, Radhakumari Maya, Muhammed Rasheed Irshad
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Stats, Vol 6, Iss 1, Pp 253-267 (2023)
Druh dokumentu: article
ISSN: 2571-905X
DOI: 10.3390/stats6010015
Popis: In this research, we design the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution, a bivariate analogue of the moment exponential distribution, using the Farlie–Gumbel–Morgenstern approach. With the analysis of real-life data, the competitiveness of the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution in comparison with the other Farlie–Gumbel–Morgenstern distributions is discussed. Based on the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution, we develop the distribution theory of concomitants of order statistics and derive the best linear unbiased estimator of the parameter associated with the variable of primary interest (study variable). Evaluations are also conducted regarding the efficiency comparison of the best linear unbiased estimator relative to the respective unbiased estimator. Additionally, empirical illustrations of the best linear unbiased estimator with respect to the unbiased estimator are performed.
Databáze: Directory of Open Access Journals