Autor: |
Che-Pei Cho, Szu-Chieh Lin, Ming-Yuan Chou, Hsiu-Ting Hsu, Kung-Yao Chang |
Jazyk: |
angličtina |
Rok vydání: |
2013 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 8, Iss 4, p e62283 (2013) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0062283 |
Popis: |
RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3' direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) -1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate-1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for-1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing-1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study's findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|