Autor: |
Smriti Shringi, Donal O’Toole, Emily Cole, Katherine N. Baker, Stephen N. White, Gaetano Donofrio, Hong Li, Cristina W. Cunha |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Vaccines, Vol 9, Iss 2, p 90 (2021) |
Druh dokumentu: |
article |
ISSN: |
2076-393X |
DOI: |
10.3390/vaccines9020090 |
Popis: |
An efficacious vaccine for sheep-associated malignant catarrhal fever (SA-MCF) is important for the livestock industry. Research towards SA-MCF vaccine development is hindered by the absence of culture systems to propagate the causative agent, ovine herpesvirus-2 (OvHV-2), which means its genome cannot be experimentally modified to generate an attenuated vaccine strain. Alternative approaches for vaccine development are needed to deliver OvHV-2 antigens. Bovine herpesvirus 4 (BoHV-4) has been evaluated as a vaccine vector for several viral antigens with promising results. In this study, we genetically engineered BoHV-4 to express OvHV-2 glycoprotein B (gB) and evaluated its efficacy as an SA-MCF vaccine using a rabbit model. The construction of a viable recombinant virus (BoHV-4-AΔTK-OvHV-2-gB) and confirmation of OvHV-2 gB expression were performed in vitro. The immunization of rabbits with BoHV-4-AΔTK-OvHV-2-gB elicited strong humoral responses to OvHV-2 gB, including neutralizing antibodies. Following intra-nasal challenge with a lethal dose of OvHV-2, 42.9% of the OvHV-2 gB vaccinated rabbits were protected against SA-MCF, while all rabbits in the mock-vaccinated group succumbed to SA-MCF. Overall, OvHV-2 gB delivered by the recombinant BoHV-4 was immunogenic and partly protective against SA-MCF in rabbits. These are promising results towards an SA-MCF vaccine; however, improvements are needed to increase protection rates. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|