Autor: |
Oon Cheen Sean, Yew Sin Nee, Chew Bee Teng, Newaz Kazi Md Salim, Al-Shamma'a Ahmed, Shaw Andy, Amiri Ahmad |
Jazyk: |
angličtina |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
EPJ Web of Conferences, Vol 92, p 02056 (2015) |
Druh dokumentu: |
article |
ISSN: |
2100-014X |
DOI: |
10.1051/epjconf/20159202056 |
Popis: |
Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT) is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|