Autor: |
Junyeong Kim, Ji Woo Hong, Sunjae Yoon, Chang D. Yoo |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 23, p 9399 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22239399 |
Popis: |
“A Picture is worth a thousand words”. Given an image, humans are able to deduce various cause-and-effect captions of past, current, and future events beyond the image. The task of visual commonsense generation has the aim of generating three cause-and-effect captions for a given image: (1) what needed to happen before, (2) what is the current intent, and (3) what will happen after. However, this task is challenging for machines, owing to two limitations: existing approaches (1) directly utilize conventional vision–language transformers to learn relationships between input modalities and (2) ignore relations among target cause-and-effect captions, but consider each caption independently. Herein, we propose Cause-and-Effect BART (CE-BART), which is based on (1) a structured graph reasoner that captures intra- and inter-modality relationships among visual and textual representations and (2) a cause-and-effect generator that generates cause-and-effect captions by considering the causal relations among inferences. We demonstrate the validity of CE-BART on the VisualCOMET and AVSD benchmarks. CE-BART achieved SOTA performance on both benchmarks, while an extensive ablation study and qualitative analysis demonstrated the performance gain and improved interpretability. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|