Towards Cleaner Cities: Estimating Vehicle-Induced PM2.5 with Hybrid EBM-CMA-ES Modeling

Autor: Saleh Alotaibi, Hamad Almujibah, Khalaf Alla Adam Mohamed, Adil A. M. Elhassan, Badr T. Alsulami, Abdullah Alsaluli, Afaq Khattak
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Toxics, Vol 12, Iss 11, p 827 (2024)
Druh dokumentu: article
ISSN: 2305-6304
DOI: 10.3390/toxics12110827
Popis: In developing countries, vehicle emissions are a major source of atmospheric pollution, worsened by aging vehicle fleets and less stringent emissions regulations. This results in elevated levels of particulate matter, contributing to the degradation of urban air quality and increasing concerns over the broader effects of atmospheric emissions on human health. This study proposes a Hybrid Explainable Boosting Machine (EBM) framework, optimized using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), to predict vehicle-related PM2.5 concentrations and analyze contributing factors. Air quality data were collected from Open-Seneca sensors installed along the Nairobi Expressway, alongside meteorological and traffic data. The CMA-ES-tuned EBM model achieved a Mean Absolute Error (MAE) of 2.033 and an R2 of 0.843, outperforming other models. A key strength of the EBM is its interpretability, revealing that the location was the most critical factor influencing PM2.5 concentrations, followed by humidity and temperature. Elevated PM2.5 levels were observed near the Westlands roundabout, and medium to high humidity correlated with higher PM2.5 levels. Furthermore, the interaction between humidity and traffic volume played a significant role in determining PM2.5 concentrations. By combining CMA-ES for hyperparameter optimization and EBM for prediction and interpretation, this study provides both high predictive accuracy and valuable insights into the environmental drivers of urban air pollution, providing practical guidance for air quality management.
Databáze: Directory of Open Access Journals