Dynamics analysis of dengue fever model with harmonic mean type under fractal-fractional derivative

Autor: Khaled A. Aldwoah, Mohammed A. Almalahi, Kamal Shah, Muath Awadalla, Ria H. Egami
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 6, Pp 13894-13926 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024676?viewType=HTML
Popis: Dengue is a viral illness transmitted by Aedes mosquitoes and is a significant global threat. In this study, we developed a model of the dengue epidemic that incorporates larvicide and adulticide, as well as the harmonic mean incidence rate under fractal-fractional derivatives. We examined various theoretical aspects of the model, including nonnegativity, boundedness, existence, uniqueness, and stability. We computed the basic reproduction number $ \Re _{0} $ using the next-generation matrix. The model has two disease-free equilibriums, a trivial equilibrium, and a biologically realistic, along with one endemic equilibrium point. These findings enhanced our understanding of dengue transmission, providing valuable insights for awareness campaigns, control strategies, intervention approaches, decision support, guiding public health planning, and resource allocation to manage dengue effectively.
Databáze: Directory of Open Access Journals