Information Bottleneck Driven Deep Video Compression—IBOpenDVCW

Autor: Timor Leiderman, Yosef Ben Ezra
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Entropy, Vol 26, Iss 10, p 836 (2024)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e26100836
Popis: Video compression remains a challenging task despite significant advancements in end-to-end optimized deep networks for video coding. This study, inspired by information bottleneck (IB) theory, introduces a novel approach that combines IB theory with wavelet transform. We perform a comprehensive analysis of information and mutual information across various mother wavelets and decomposition levels. Additionally, we replace the conventional average pooling layers with a discrete wavelet transform creating more advanced pooling methods to investigate their effects on information and mutual information. Our results demonstrate that the proposed model and training technique outperform existing state-of-the-art video compression methods, delivering competitive rate-distortion performance compared to the AVC/H.264 and HEVC/H.265 codecs.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje