Popis: |
The frequent traffic accidents lead to a large number of casualties and large related financial losses every year; this serious state is owed to several factors; among those, driving behavior is one of the most imperative subjects to discuss. Driving behaviors mainly include behavior characteristics such as car-following, lane change, and risky driving behavior such as distraction, fatigue, or aggressive driving, which are of great help to various tasks in traffic engineering. An accurate and reliable method of driving behavior recognition is of great significance and guidance for vehicle driving safety. In this paper, the vehicle multisensor information, vehicle CAN bus data acquisition system, and typical feature extraction methods are summarized at first. And then, several driving behavior recognition models based on machine learning and deep learning are reviewed. Through a detailed analysis of the features of random forests, support vector machines, convolutional neural networks, and recurrent neural networks used to build driving behavior recognition models, the following findings are obtained: the driving behavior model constructed by traditional machine learning model is relatively mature but it is greatly affected by feature extraction, data scale, and model structure, which affects the accuracy of the final driving behavior recognition. Deep learning model based on a neural network has achieved high accuracy in identifying driving behavior, and it may gradually become the mainstream of constructing the driving behavior model with the development of big data, artificial intelligence technology, and computer hardware. Finally, this paper points out some content that needs to be further explored, to provide reference and inspiration for scholars in this field to continue to study the driving behavior recognition model in depth. |