On Schwarzschild’s Interior Solution and Perfect Fluid Star Model

Autor: Elisabetta Barletta, Sorin Dragomir, Francesco Esposito
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Symmetry, Vol 12, Iss 10, p 1669 (2020)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym12101669
Popis: We solve the boundary value problem for Einstein’s gravitational field equations in the presence of matter in the form of an incompressible perfect fluid of density ρ and pressure field p(r) located in a ball r≤r0. We find a 1-parameter family of time-independent and radially symmetric solutions ga,ρa,pa:−2m9κM/(4c2) identifies the “physical” (i.e., such that pa(r)≥0 and pa(r) is bounded in 0≤r≤r0) solutions {pa:a∈U0} for some neighbourhood U0⊂(−2m,+∞) of a=0. For every star model {ga:a0
Databáze: Directory of Open Access Journals