Autor: |
Hui Wang, Dan Li, Ruilin Zhou, Xiaoyu Hu, Leyi Wang, Lang Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 16, Iss 19, p 3694 (2024) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs16193694 |
Popis: |
Estimation of anthropogenic carbon dioxide (CO2) emission sources and natural sinks (i.e., CO2 fluxes) is essential for the development of climate policies. Satellite observations provide an opportunity for top-down inversion of CO2 fluxes, which can be used to improve the results of bottom-up estimation. This study proposes to develop a new top-down CO2 flux estimation method based on deep learning, as well as satellite observations, and an atmospheric chemical transport model. This method utilizes two deep learning models: the concentration correction model and the concentration–flux inversion model. The former optimizes the GEOS-Chem-simulated CO2 concentration using Orbiting Carbon Observatory-2 (OCO-2) satellite observations, while the latter establishes the complicated relationship between CO2 concentration and CO2 flux. Results showed that both deep learning models demonstrated excellent prediction performance, with a mean bias of 0.461 ppm for the concentration correction model and an annual mean correlation coefficient of 0.920 for the concentration–flux inversion model. A posterior CO2 flux was obtained through a two-step optimization process using these well-trained models. Our findings indicate that the posterior estimations of CO2 flux sources in eastern China and northern Europe have been significantly reduced compared to the prior estimations. This study provides a new perspective on top-down CO2 flux inversion using satellite observation. With advancements in deep learning algorithms and increased satellite observations, this method may become an effective approach for CO2 flux inversion in the future. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|