A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions

Autor: Cristian Duarte-Leiva, Sebastián Lorca, Exequiel Mallea-Zepeda
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Symmetry, Vol 13, Iss 8, p 1348 (2021)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym13081348
Popis: Micropolar fluids are fluids with microstructure and belong to a class of fluids with asymmetric stress tensor that called Polar fluids, and include, as a special case, the well-established Navier–Stokes model. In this work we study a 3D micropolar fluids model with Navier boundary conditions without friction for the velocity field and homogeneous Dirichlet boundary conditions for the angular velocity. Using the Galerkin method, we prove the existence of weak solutions and establish a Prodi–Serrin regularity type result which allow us to obtain global-in-time strong solutions at finite time.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje