Autor: |
Cristian Duarte-Leiva, Sebastián Lorca, Exequiel Mallea-Zepeda |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 13, Iss 8, p 1348 (2021) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym13081348 |
Popis: |
Micropolar fluids are fluids with microstructure and belong to a class of fluids with asymmetric stress tensor that called Polar fluids, and include, as a special case, the well-established Navier–Stokes model. In this work we study a 3D micropolar fluids model with Navier boundary conditions without friction for the velocity field and homogeneous Dirichlet boundary conditions for the angular velocity. Using the Galerkin method, we prove the existence of weak solutions and establish a Prodi–Serrin regularity type result which allow us to obtain global-in-time strong solutions at finite time. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|