Improvement of microwave emissivity parameterization of frozen Arctic soils using roughness measurements derived from photogrammetry

Autor: J. Meloche, A. Royer, A. Langlois, N. Rutter, V. Sasseville
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Digital Earth, Vol 14, Iss 10, Pp 1380-1396 (2021)
Druh dokumentu: article
ISSN: 1753-8947
1753-8955
17538947
DOI: 10.1080/17538947.2020.1836049
Popis: Soil emissivity of Arctic regions is a key parameter for assessing surface properties from microwave brightness temperature (Tb) measurements. Particularly in winter, frozen soil permittivity and roughness are two poorly characterized unknowns that must be considered. Here, we show that after removing snow, the 3D soil roughness can be accurately inferred from in-situ photogrammetry using Structure from Motion (SfM). We focus on using SfM techniques to provide accurate roughness measurements and improve emissivity models parametrization of frozen arctic soil for microwave applications. Validation was performed from ground-based radiometric measurements at 19 and 37 GHz using three different soil emission models: the Wegmüller and Mätzler [1999, TGRS] model (Weg99), the Wang and Choudhury [1981, JGR] model (QNH), and a geometrical optics model (Geo Optics). Measured and simulated brightness temperatures over different tundra and rock sites in the Canadian High Arctic show that Weg99, parametrized with SfM-based roughness and optimized permittivity $\lpar \varepsilon \rpar$, yielded an RMSE of 3.1 K ( $R^2 = 0.71$) for all frequencies and polarizations. Our SfM based approach allowed us to measure roughness with 0.1 mm accuracy at 55 locations of different land cover type using a digital camera and metal plates of know dimensions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje