Autor: |
Leili Tapak, Mohammad Kazem Ghasemi, Saeid Afshar, Hossein Mahjub, Alireza Soltanian, Hassan Khotanlou |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
BMC Medical Genomics, Vol 16, Iss 1, Pp 1-12 (2023) |
Druh dokumentu: |
article |
ISSN: |
1755-8794 |
DOI: |
10.1186/s12920-023-01462-6 |
Popis: |
Abstract Background Oral cancer (OC) is a debilitating disease that can affect the quality of life of these patients adversely. Oral premalignant lesion patients have a high risk of developing OC. Therefore, identifying robust survival subgroups among them may significantly improve patient therapy and care. This study aimed to identify prognostic biomarkers that predict the time-to-development of OC and survival stratification for patients using state-of-the-art machine learning and deep learning. Methods Gene expression profiles (29,096 probes) related to 86 patients from the GSE26549 dataset from the GEO repository were used. An autoencoder deep learning neural network model was used to extract features. We also used a univariate Cox regression model to select significant features obtained from the deep learning method (P |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|