'Metal-bone' scaffold for accelerated peri-implant endosseous healing

Autor: Yue Lu, Xianggang Wang, Hao Chen, Xin Li, He Liu, Jincheng Wang, Zhihui Qian
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Bioengineering and Biotechnology, Vol 11 (2024)
Druh dokumentu: article
ISSN: 2296-4185
DOI: 10.3389/fbioe.2023.1334072
Popis: Restoring bone defects caused by conditions such as tumors, trauma, or inflammation is a significant clinical challenge. Currently, there is a need for the development of bone tissue engineering scaffolds that meet clinical standards to promote bone regeneration in these defects. In this study, we combined the porous Ti6Al4V scaffold in bone tissue engineering with advanced bone grafting techniques to create a novel “metal-bone” scaffold for enhanced bone regeneration. Utilizing 3D printing technology, we fabricated a porous Ti6Al4V scaffold with an average pore size of 789 ± 22.69 μm. The characterization and biocompatibility of the scaffold were validated through in vitro experiments. Subsequently, the scaffold was implanted into the distal femurs of experimental animals, removed after 3 months, and transformed into a “metal-bone” scaffold. When this “metal-bone” scaffold was re-implanted into bone defects in the animals, the results demonstrated that, in comparison to a plain porous Ti6Al4V scaffold, the scaffold containing bone tissue achieved accelerated early-stage bone regeneration. The experimental group exhibited more bone tissue generation in the early stages at the defect site, resulting in superior bone integration. In conclusion, the “metal-bone” scaffold, containing bone tissue, proves to be an effective bone-promoting scaffold with promising clinical applications.
Databáze: Directory of Open Access Journals