Introduction to gradient h-almost η-Ricci soliton warped product
Autor: | Nandan Bhunia, Sampa Pahan, Arindam Bhattacharyya, Sanjib Kimar Datta |
---|---|
Jazyk: | English<br />Portuguese |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024) |
Druh dokumentu: | article |
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.65021 |
Popis: | In this paper, we introduce the new concept of gradient h-almost η-Ricci soliton. We discuss here a steady or expanding gradient h-almost η-Ricci soliton warped product Bn ×f Fm, m > 1. We show that the warping function f of this warped product attains minimum as well as maximum and it will definitely be a Riemannian product under certain conditions. We also describe some suitable restrictions to these constructions for the compact base of this warped product. Later, we study h-almost η-Ricci soliton and gradient h-almost η-Ricci soliton on warped product manifolds including a concurrent vector field. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |