Autor: |
M. B. Vinaya Krishnan, Aruna Kumar Nayak, Asrith Krishna Radhakrishnan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
European Physical Journal C: Particles and Fields, Vol 84, Iss 3, Pp 1-8 (2024) |
Druh dokumentu: |
article |
ISSN: |
1434-6052 |
DOI: |
10.1140/epjc/s10052-024-12527-w |
Popis: |
Abstract Many analyses are performed by the LHC experiments to search for heavy gauge bosons, which appear in several new physics models. The invariant mass reconstruction of heavy gauge bosons is difficult when they decay to $$\tau $$ τ leptons due to missing neutrinos in the final state. Machine learning techniques are widely utilized in experimental high-energy physics, in particular in analyzing the large amount of data produced at the LHC. In this paper, we study various machine learning techniques to reconstruct the invariant mass of $$Z^{\prime }~\rightarrow ~\tau \tau $$ Z ′ → τ τ and $$W^{\prime }~\rightarrow ~\tau \nu $$ W ′ → τ ν decays, which can improve the sensitivity of these searches. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|