A Low-Cost and Lightweight Real-Time Object-Detection Method Based on UAV Remote Sensing in Transportation Systems

Autor: Ziye Liu, Chen Chen, Ziqin Huang, Yoong Choon Chang, Lei Liu, Qingqi Pei
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Remote Sensing, Vol 16, Iss 19, p 3712 (2024)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs16193712
Popis: Accurate detection of transportation objects is pivotal for enhancing driving safety and operational efficiency. In the rapidly evolving domain of transportation systems, the utilization of unmanned aerial vehicles (UAVs) for low-altitude detection, leveraging remotely-sensed images and videos, has become increasingly vital. Addressing the growing demands for robust, real-time object-detection capabilities, this study introduces a lightweight, memory-efficient model specifically engineered for the constrained computational and power resources of UAV-embedded platforms. Incorporating the FasterNet-16 backbone, the model significantly enhances feature-processing efficiency, which is essential for real-time applications across diverse UAV operations. A novel multi-scale feature-fusion technique is employed to improve feature utilization while maintaining a compact architecture through passive integration methods. Extensive performance evaluations across various embedded platforms have demonstrated the model’s superior capabilities and robustness in real-time operations, thereby markedly advancing UAV deployment in crucial remote-sensing tasks and improving productivity and safety across multiple domains.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje