Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis

Autor: Rafael Álvarez-Chimal, Víctor I. García-Pérez, Marco Antonio Álvarez-Pérez, Rosario Tavera-Hernández, Lorena Reyes-Carmona, Miryam Martínez-Hernández, Jesús Ángel Arenas-Alatorre
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Arabian Journal of Chemistry, Vol 15, Iss 6, Pp 103804- (2022)
Druh dokumentu: article
ISSN: 1878-5352
DOI: 10.1016/j.arabjc.2022.103804
Popis: Bacteria-associated infections have increased in recent years due to treatment resistance developed by these microorganisms. Due to the high antibacterial capacity associated with their nanometric size, nanoparticles, such as zinc oxide (ZnO), have proven to be an alternative for general medical procedures. One of the methodologies to synthesize them is green synthesis, where the most commonly used resources are plant species. Using Dysphania ambrosioides extract at various synthesis temperatures (200, 400, 600, and 800 °C), zinc oxide nanoparticles (ZnO-NPs) with average sizes ranging from 7 to 130 nm, quasi-spherical shapes, and hexagonal prism shapes were synthesized. Larger sizes were obtained by increasing the synthesis temperature. The ZnO crystalline phase was confirmed by X-ray diffraction and transmission electron microscopy. The sizes and shapes were observed by field emission scanning electron microscopy. The Zn-O bond vibration was identified by Fourier transform infrared spectroscopy. Thermogravimetry showed the stability of ZnO-NPs. The antibacterial evaluations, disk diffusion test, and minimum bactericidal concentration, demonstrated the influence of particle size. The smaller the nanoparticle size, the higher the inhibition for all pathogenic strains: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, and dental pathogens: Streptococcus mutans, Streptococcus sanguinis, Porphyromonas gingivalis, and Prevotella intermedia. The molecular docking study showed a favorable interaction between ZnO-NPs and some proteins in Gram-positive and Gram-negative bacteria, such as TagF in Staphylococcus epidermidis and AcrAB-TolC in Escherichia coli, which led to proposing them as possible targets of nanoparticles.
Databáze: Directory of Open Access Journals