Maximum Correntropy Criterion with Distributed Method

Autor: Fan Xie, Ting Hu, Shixu Wang, Baobin Wang
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 3, p 304 (2022)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10030304
Popis: The Maximum Correntropy Criterion (MCC) has recently triggered enormous research activities in engineering and machine learning communities since it is robust when faced with heavy-tailed noise or outliers in practice. This work is interested in distributed MCC algorithms, based on a divide-and-conquer strategy, which can deal with big data efficiently. By establishing minmax optimal error bounds, our results show that the averaging output function of this distributed algorithm can achieve comparable convergence rates to the algorithm processing the total data in one single machine.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje