Autor: |
Udit Narula, Cher Ming Tan |
Jazyk: |
angličtina |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 6, Iss 7, p 204 (2016) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app6070204 |
Popis: |
A systematic method to identify key factors that control the synthesis of Physical Vapor Deposition (PVD)-based graphene on copper is necessary for engineering graphene growth. The statistical design-of-experiments method is employed and demonstrated in this work in order to fulfill the necessity. Full-factorial design-of-experiments are performed to examine the significance of the main effects and the extent of the interactions of the controlling factors, which are responsible for the number of layers and the quality of the grown graphene. We found that a thinner amorphous carbon layer and a higher annealing temperature are suitable for the growth of mono-layer/few-layer graphene with low defects, while the effect of annealing time has a trade-off and needs to be optimized further. On the other hand, the same treatment, but with larger annealing times will result in multi-layer graphene and low defects. The results obtained from the analysis of the design-of-experiments are verified experimentally with Raman characterization. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|