Autor: |
Amir Adeli, Xavier Emery, Peter Dowd |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Minerals, Vol 8, Iss 1, p 7 (2017) |
Druh dokumentu: |
article |
ISSN: |
2075-163X |
DOI: |
10.3390/min8010007 |
Popis: |
This paper proposes a geostatistical approach for geological modelling and for validating an interpreted geological model, by identifying the areas of an ore deposit with a high probability of being misinterpreted, based on quantitative coregionalised covariates correlated with the geological categories. This proposal is presented through a case study of an iron ore deposit at a stage where the only available data are from exploration drill holes. This study consists of jointly simulating the quantitative covariates with no previous geological domaining. A change of variables is used to account for stoichiometric closure, followed by projection pursuit multivariate transformation, multivariate Gaussian simulation, and conditioning to the drill hole data. Subsequently, a decision tree classification algorithm is used to convert the simulated values into a geological category for each target block and realisation. The determination of the prior (ignoring drill hole data) and posterior (conditioned to drill hole data) probabilities of categories provides a means of identifying the blocks for which the interpreted category disagrees with the simulated quantitative covariates. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|