Popis: |
BackgroundSurgical scheduling is pivotal in managing daily surgical sequences, impacting patient experience and hospital resources significantly. With operating rooms costing approximately US $36 per minute, efficient scheduling is vital. However, global practices in surgical scheduling vary, largely due to challenges in predicting individual surgeon times for diverse patient conditions. Inspired by the Toyota Production System’s efficiency in addressing similar logistical challenges, we applied its principles as detailed in the book “Lean Thinking” by Womack and Jones, which identifies processes that do not meet customer needs as wasteful. This insight is critical in health care, where waste can compromise patient safety and medical quality. ObjectiveThis study aims to use lean thinking and Toyota methods to develop a more efficient surgical scheduling system that better aligns with user needs without additional financial burdens. MethodsWe implemented the 5 principles of the Toyota system: specifying value, identifying the value stream, enabling flow, establishing pull, and pursuing perfection. Value was defined in terms of meeting the customer’s needs, which in this context involved developing a responsive and efficient scheduling system. Our approach included 2 subsystems: one handling presurgery patient data and another for intraoperative and postoperative data. We identified inefficiencies in the presurgery data subsystem and responded by creating a comprehensive value stream map of the surgical process. We developed 2 Excel (Microsoft Corporation) macros using Visual Basic for Applications. The first calculated average surgery times from intra- or postoperative historic data, while the second estimated surgery durations and generated concise, visually engaging scheduling reports from presurgery data. We assessed the effectiveness of the new system by comparing task completion times and user satisfaction between the old and new systems. ResultsThe implementation of the revised scheduling system significantly reduced the overall scheduling time from 301 seconds to 261 seconds (P=.02), with significant time reductions in the revised process from 99 seconds to 62 seconds (P |