Targeting a key protein-protein interaction surface on mitogen-activated protein kinases by a precision-guided warhead scaffold

Autor: Ádám Levente Póti, Dániel Bálint, Anita Alexa, Péter Sok, Kristóf Ozsváth, Krisztián Albert, Gábor Turczel, Sarolt Magyari, Orsolya Ember, Kinga Papp, Sándor Balázs Király, Tímea Imre, Krisztina Németh, Tibor Kurtán, Gergő Gógl, Szilárd Varga, Tibor Soós, Attila Reményi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Nature Communications, Vol 15, Iss 1, Pp 1-22 (2024)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-024-52574-1
Popis: Abstract For mitogen-activated protein kinases (MAPKs) a shallow surface—distinct from the substrate binding pocket—called the D(ocking)-groove governs partner protein binding. Screening of broad range of Michael acceptor compounds identified a double-activated, sterically crowded cyclohexenone moiety as a promising scaffold. We show that compounds bearing this structurally complex chiral warhead are able to target the conserved MAPK D-groove cysteine via reversible covalent modification and interfere with the protein-protein interactions of MAPKs. The electronic and steric properties of the Michael acceptor can be tailored via different substitution patterns. The inversion of the chiral center of the warhead can reroute chemical bond formation with the targeted cysteine towards the neighboring, but less nucleophilic histidine. Compounds bind to the shallow MAPK D-groove with low micromolar affinity in vitro and perturb MAPK signaling networks in the cell. This class of chiral, cyclic and enhanced 3D shaped Michael acceptor scaffolds offers an alternative to conventional ATP-competitive drugs modulating MAPK signaling pathways.
Databáze: Directory of Open Access Journals