Popis: |
Abstract Successful conservation efforts for threatened species depend on accurate characterization of their distribution, habitat use, and threats. However, surveillance can be challenging for species with small size, cryptic coloring, or elusive behavior. Environmental DNA (eDNA) monitoring can provide a sensitive and noninvasive alternative to traditional surveillance techniques by detecting trace DNA shed by a target species into their environment. We evaluated the efficacy of eDNA monitoring for the four‐toed salamander (Hemidactylium scutatum), a terrestrial salamander threatened throughout much of its range. Additionally, we integrated eDNA monitoring for ranavirus, a widespread pathogen of ectothermic vertebrates, to efficiently evaluate a potential disease threat to H. scutatum. We designed a novel species‐specific quantitative PCR (qPCR) assay for H. scutatum, multiplexed the assay with a previously developed ranavirus qPCR assay, and validated the multiplexed tests in silico, in vitro, and in situ. We collected aquatic eDNA weekly for 8 weeks from pools with historical reports of H. scutatum (n = 6) and contemporary reports of H. scutatum on associated uplands (n = 4). We identified H. scutatum eDNA at low quantities ( |