Family history information extraction via deep joint learning

Autor: Xue Shi, Dehuan Jiang, Yuanhang Huang, Xiaolong Wang, Qingcai Chen, Jun Yan, Buzhou Tang
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: BMC Medical Informatics and Decision Making, Vol 19, Iss S10, Pp 1-6 (2019)
Druh dokumentu: article
ISSN: 1472-6947
DOI: 10.1186/s12911-019-0995-5
Popis: Abstract Background Family history (FH) information, including family members, side of family of family members (i.e., maternal or paternal), living status of family members, observations (diseases) of family members, etc., is very important in the decision-making process of disorder diagnosis and treatment. However FH information cannot be used directly by computers as it is always embedded in unstructured text in electronic health records (EHRs). In order to extract FH information form clinical text, there is a need of natural language processing (NLP). In the BioCreative/OHNLP2018 challenge, there is a task regarding FH extraction (i.e., task1), including two subtasks: (1) entity identification, identifying family members and their observations (diseases) mentioned in clinical text; (2) family history extraction, extracting side of family of family members, living status of family members, and observations of family members. For this task, we propose a system based on deep joint learning methods to extract FH information. Our system achieves the highest F1- scores of 0.8901 on subtask1 and 0.6359 on subtask2, respectively.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje