Autor: |
Weihua Li, Chengcheng Fang, Wei Cao |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 5, Iss 4, Pp 2877-2887 (2020) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2020185/fulltext.html |
Popis: |
Let $\mathbb{F}_q$ be the finite field of order $q$ and $f(x)$ be an irreducible polynomial of degree $n$ over $\mathbb{F} _q$. For a positive divisor $n_1$ of $n$, define the $n_1$-traces of $f(x)$ to be $\mathrm{Tr}(\alpha;n_1)=\alpha+\alpha^q+\cdots+\alpha^{q^{n_1-1}}$ where $\alpha$'s are the roots of $f(x)$. Let $N_q^*(n;n_1)$ denote the number of monic irreducible polynomials of degree $n$ over $\mathbb{F} _q$ with nozero $n_1$-traces. Ruskey, Miers and Sawada have found the formula for $N_q^*(n;n)$. Based on the properties of linearized polynomials, we obtain the formula for $N_q^*(n;n_1)$ in the general case, including a new proof to the result by Ruskey, Miers and Sawada. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|